footer_shadow

Half Asleep, Fully Tired: Jackdaws Shift Their Sleeping Strategies

A new study reveals that the corvids abandon one-sided sleep for full-brain rest when pressure to recover mounts.

Jackdaw (© davie Abraham)

Sleep, while vital, renders animals vulnerable. Many birds, like marine mammals, have evolved a solution: unihemispheric or asymmetric sleep, allowing one half of the brain to rest while the other stays alert. But new research on jackdaws suggests that when sleep pressure rises, vigilance takes a back seat to recovery — with birds switching to deeper, more symmetrical sleep.

In a high-tech study involving 28 EEG electrodes across the jackdaw brain, scientists tracked changes in brain activity during normal rest and after sleep deprivation. The results were striking: following a long period of wakefulness, jackdaws sacrificed their usual pattern of asymmetric sleep in favour of synchronous, whole-brain rest.

This shift reveals a fundamental trade-off in sleep ecology. Asymmetric sleep may offer a window of alertness in risky settings — like when perched in exposed roosts — but it slows down the brain’s ability to fully recover. When deprived of sleep, the birds appear to prioritise depth over defence.

The team, from the University of Groningen and the Max Planck Institute for Biological Intelligence, used gentle stimulation to keep the birds awake for four or eight hours. The following recovery nights showed not just more sleep overall, but a pronounced drop in brain hemisphere asymmetry, especially in the anterior and middle regions of the visual brain. These findings indicate that the homeostatic drive for deep sleep eventually overrides the benefits of keeping “half an eye open.”

Unihemispheric and asymmetric sleep have evolved repeatedly in species under strong predation pressure, from ducks and dolphins to seals and penguins. However, this new study adds nuance, suggesting that these patterns are flexible — and constrained. When the need to restore cognitive function is high, the brain may abandon asymmetry, even if it means compromising vigilance.

The research also uncovered a unique 7-Hz brain oscillation in jackdaws, not seen in other birds, which may play a role in their unusually complex cognitive lives. This frequency, resembling theta rhythms involved in memory in mammals, decreased after sleep deprivation — again underscoring the physiological cost of staying awake.

The study deepens our understanding of avian sleep and its remarkable adaptability. It also hints at broader truths about how animals balance safety and recovery, cognition and survival — whether perched on a branch or navigating the human world.

 

3 Apr 2025

 

Share this story

 

 

 

 

freetrial-badge

 

Latest articles

article_thumb

Weekly birding round-up: 5 - 11 Sept

The biggest news of the week was an unprecedented influx of Glossy Ibis into Britain and Ireland, but there was also a decent seasoning of additional rarities and scarcities on offer too. More here >

article_thumb

Save The Date: North West Bird Watching Festival, 18-19 Oct

The festival for everyone who loves birds is back this October. Book online now for 10% off and join a weekend of inspiration, learning and discovery. More here >

article_thumb

Forest Birds Face Deadly Threat from Window Collisions

New research reveals that seasonally fruit-eating species such as thrushes and sparrows are disproportionately vulnerable to glass strikes, with collisions continuing well into winter. More here >

article_thumb

Egyptian Nightjars Found to Be Year-Round Residents at the Dead Sea

Tracking study reveals that these cryptic desert birds remain in the region year-round, showing strong fidelity to specific roost sites. More here >

article_thumb

Male-Plumaged Female Hummingbird Provides Parental Care in Costa Rica

An unusual discovery on a roadside powerline
In February 2025, researchers documented a striking and unusual case in Palmar Norte, southern Costa Rica. More here >